2 research outputs found

    Revisiting Membership Problems in Subclasses of Rational Relations

    Full text link
    We revisit the membership problem for subclasses of rational relations over finite and infinite words: Given a relation R in a class C_2, does R belong to a smaller class C_1? The subclasses of rational relations that we consider are formed by the deterministic rational relations, synchronous (also called automatic or regular) relations, and recognizable relations. For almost all versions of the membership problem, determining the precise complexity or even decidability has remained an open problem for almost two decades. In this paper, we provide improved complexity and new decidability results. (i) Testing whether a synchronous relation over infinite words is recognizable is NL-complete (PSPACE-complete) if the relation is given by a deterministic (nondeterministic) omega-automaton. This fully settles the complexity of this recognizability problem, matching the complexity of the same problem over finite words. (ii) Testing whether a deterministic rational binary relation is recognizable is decidable in polynomial time, which improves a previously known double exponential time upper bound. For relations of higher arity, we present a randomized exponential time algorithm. (iii) We provide the first algorithm to decide whether a deterministic rational relation is synchronous. For binary relations the algorithm even runs in polynomial time

    Ramsey Quantifiers over Automatic Structures: Complexity and Applications to Verification

    Full text link
    Automatic structures are infinite structures that are finitely represented by synchronized finite-state automata. This paper concerns specifically automatic structures over finite words and trees (ranked/unranked). We investigate the "directed version" of Ramsey quantifiers, which express the existence of an infinite directed clique. This subsumes the standard "undirected version" of Ramsey quantifiers. Interesting connections between Ramsey quantifiers and two problems in verification are firstly observed: (1) reachability with B\"{u}chi and generalized B\"{u}chi conditions in regular model checking can be seen as Ramsey quantification over transitive automatic graphs (i.e., whose edge relations are transitive), (2) checking monadic decomposability (a.k.a. recognizability) of automatic relations can be viewed as Ramsey quantification over co-transitive automatic graphs (i.e., the complements of whose edge relations are transitive). We provide a comprehensive complexity landscape of Ramsey quantifiers in these three cases (general, transitive, co-transitive), all between NL and EXP. In turn, this yields a wealth of new results with precise complexity, e.g., verification of subtree/flat prefix rewriting, as well as monadic decomposability over tree-automatic relations. We also obtain substantially simpler proofs, e.g., for NL complexity for monadic decomposability over word-automatic relations (given by DFAs)
    corecore